login contact us
RosConcert.com HomePage
    NEWS CENTRAL >> Hi-Tech

News Central


Hi-Tech

Математик приблизился к решению проблемы Гольдбаха
5:44PM Tuesday, May 15, 2012
По горизонтали откладываются четные числа до миллиона, а по вертикали - количество представлений этих чисел в виде суммы двух простых. Иллюстрация Glivi/Wikipedia
Математик Теренс Тао (Terence Tao) из Калифорнийского университета продвинулся в доказательстве малой (тернарной) проблемы Гольдабаха. Об этом сообщает Nature News. Препринт статьи доступен на сайте arXiv.org.

Название проблем Гольдбаха носят сразу две задачи. Первая, сильная или бинарная проблема звучит так: доказать, что всякое четное число больше четырех представимо в виде суммы двух простых. Вместе с гипотезой Римана эта проблема входит (под номером 8) в знаменитый список проблем Гильберта. Слабая или тернарная проблема звучит следующим образом: доказать, что всякое нечетное число больше пяти представимо в виде суммы трех простых. Из справедливости бинарной проблемы следует справедливость тернарной (в качестве одного из простых в разложении достаточно взять тройку).

Наибольшие продвижения в решении сделаны в направлении тернарной задачи. Так, в 1937 году математик Иван Виноградов доказал, что все достаточно большие (то есть большие некоторого фиксированного N) нечетные числа можно представить в виде суммы трех простых. Его учеником Константином Бороздиным было показано, что граница N в работе Виноградова составляет число порядка 106 846 168. Позже она неоднократно уменьшалась и в настоящее время лучший порядок оценки - 1043 000,5.

Полученные результаты все еще не позволяют проверить исключительные случаи теоремы Виноградова на компьютере, поэтому работа в этом направлении ведется достаточно активно. Теренсу Тао удалось доказать, что всякое нечетное число представимо как сумма не более чем пяти простых чисел. Фактически это ближайший к тернарной проблеме Гольдбаха результат из всех возможных - простые числа больше двойки нечетны, поэтому нечетное число не может быть представлено в виде суммы четырех таких чисел (сумма будет четной). Следующее улучшение результата - сумма трех простых чисел, то есть малая проблема Гольдбаха.

Что касается бинарной проблемы Гольдбаха, то про нее известно много меньше. В настоящий момент есть теорема Ромаре 1995 года, которая утверждает, что любое четное число представимо в виде суммы не более чем шести простых чисел. Из этого результата легко получается, что, в предположении истинности тернарной проблемы Гольдбаха, всякое четное число представимо в виде суммы не более чем четырех простых чисел.

По материалам lenta.ru
« « Вернуться       Далее » »
Другие новости по теме
  • Microsoft упростит переход на Windows Phone с "чужих" платформ
  • Региональным операторам нашли частоты для LTE
  • Создатели "школьного планшета" показали цветной экран на электронных чернилах
  • Планшеты на Windows 8 с процесcорами Intel выйдут в ноябре
  • Производство фотоаппаратов Canon поручат роботам
  • В Москве появилась сеть LTE от "МегаФона"
  • Прототип фотокамеры Leica продан за 2,16 миллиона евро
  • Apple выбросила слово "4G" из описания нового iPad
  • Nvidia задержит выход процессоров Tegra с поддержкой LTE
  • HP возобновит выпуск "домашних" планшетов
  • Apple заменит Google Maps в iPhone и iPad на собственные карты
  • Глава Foxconn подтвердил план Apple выпустить телевизор
  • "Лейке" за 8000 долларов отказали в цветной фотосъемке
  • В Xbox 360 встроят браузер с управлением жестами

    Далее » »   Digest | Архив »    
Смотрите также: Hi-Tech, Интернет, Hardware, SoftNews
News Central Home | News Central Resources | Portal News Resources | Help | Login
     
Phone Cards at ComFi Russian America Top. Рейтнг ресурсов Русской Америки. © 2025 RussianAMERICA Holding
All Rights Reserved • Contact